Печать

Названы лауреаты Нобелевской премии по физике

Лауреат Нобелевской премии 2015 года по физике не планирует останавливаться в исследования нейтрино и в ближайшее время он намерен точно измерить массу этой неуловимой частицы и понять, существуют ли другие типы нейтрино помимо трех известных науке.
Нейтринный детектор

МОСКВА, 6 окт – РИА Новости. Канадский физик Артур Макдональд, получивший Нобелевскую премию 2015 года вместе японцем Такааки Каджита за открытие нейтринных осцилляций, мечтает об измерении точной массы нейтрино, которая позволила бы ученым раскрыть секрет рождения Вселенной, о чем он сообщил на пресс-конференции в Стокгольме.

"Да, у нас действительно есть еще масса вопросов по поводу того, что собой представляют нейтрино и как их трансформации вписываются в Стандартную Модель физики. Мы пока не знаем, чему равна масса нейтрино, и сейчас в наших лабораториях проводятся эксперименты, в рамках которых мы пытаемся вычислить ее и понять, существуют ли другие типы этих частиц", — заявил ученый.

Медаль лауреата Нобелевской премии. Архивное фото
Макдональд и Каджита стали лауреатами Нобелевской премии по физике за 2015 год благодаря открытому ими в 1998 году феномену нейтринных осцилляций – способности этих неуловимых частиц "переключаться" между тремя типами: электронными, мюонными и тау-нейтрино.

Нейтрино представляют собой электрически нейтральные элементарные частицы, которые возникают в результате ядерных реакций разного типа, в частности на ядерных реакторах, или рождаются на Солнце и попадают на Землю с космическими лучами. Они отличаются крайне высокой проникающей способностью. Нейтрино может пролететь сквозь сотни метров бетона и "не заметить" препятствия.

Способность разных типов нейтрино превращаться друг в друга может существовать только в том случае, если эта частица имеет ненулевую массу. От наличия массы у нейтрино зависят оценки массы Вселенной, а значит представления о ее дальнейшей судьбе. Кроме того, ненулевая масса нейтрино может объяснить тот факт, что Вселенная состоит из материи, а антиматерии в ней практически нет, хотя в момент Большого взрыва должны были возникнуть равные количества того и другого.

Эксперты после показа фильма По следам космических призраков, который прошел в рамках проекта Научный понедельник в РИА Новости, фото с места события

Открытие Макдональда и Каджиты было окончательно подтверждено только летом 2015 года, когда физики ЦЕРН зафиксировали пятое тау-нейтрино в потоке мюонных нейтрино, движущихся из Швейцарии в Италию, где расположен знаменитый детектор OPERA, породивший сенсацию со "сверхсветовыми нейтрино" в 2011 году, которая была вскоре опровергнута.

Сейчас нельзя предсказать, как будут использоваться результаты изучения нейтрино, считают эксперты. Однако некоторые практические результаты у этих исследований все-таки уже есть или их можно ожидать в ближайшем будущем.

Как рассказали российские ученые РИА "Новости" в рамках "Научного понедельника", с помощью нейтриноскопии Земли можно составлять карты пород в недрах Земли, изучать историю извержений вулканов и таяния льдов в Антарктике, а также следить за работой атомных электростанций и отслеживать испытания ядерного оружия.


источник "РИА Новости"
Август 2018
Пн Вт Ср Чт Пт Сб Вс
30 31 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2

Казанский ГМУ - ВУЗ здорового образа жизни. Мы здоровы - присоединяйся!

Интернет-приемная ректора Казанского ГМУ

420012, Казань, ул. Бутлерова 49
Тел.: (843) 236-06-52
Факс.: (843) 236-03-93
e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.